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a b s t r a c t

The BFR (Basis Function Regression) is an interesting alternative to common techniques (such as PCR or
PLS) in chemometrics. It is based on projecting the spectral information onto some number of equally
spaced spline bases, than obtaining integrals of resulted curves. Existing references show that in certain
cases it can reduce almost twice the RMSEP values. As this technique is not so popular in chemometrics
nor applied in pharmaceutical analysis, it is desirable to present its theoretical considerations and imple-
mentation (with example MATLAB/Octave code). As an illustrative example we present the chemometric
model for content recognition of a tablet (12 possible compounds in binary or ternary combinations)
from the UV spectrum of its methanolic extract. The BFR technique gave lowest prediction error and the
estimators obtained have more meritorical meaning than in case of PCR, PLS and other techniques used
for comparison. In our opinion this technique should be considered in any chemometric approach as it
often shows better performance.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The last decade of the 20th century resulted in a significant
development in computational technology. An average personal
computer has now enough performance to handle large datasets
numerically and to apply the complicated algorithms to them. Par-
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allel development of measurement instrument technology (and
possibility of generating large datasets in computer-transferable
form) resulted in the expansion of chemometric techniques.

The main advantage of chemometric approaches to spectro-
scopic data is the use of complete spectra (saved as vectors of
absorbance values) as the explaining variable. There is no need
to perform analytical wavelength selection, because the chemo-
metric algorithms perform all necessary extraction of interesting
information from the data (and filter it from the remaining infor-
mation, or noise). The information extracted (predicted) from the
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spectrum can be very complex—for example, the famous datasets
from Kalivas [1] are used to predict the octane number of gaso-
line, or water and protein content in wheat, from their NIR spectra.
The chemometric approaches in UV region can extensively increase
the performance of the methods, when the spectra of several com-
pounds are overlapped and classical methods are very problematic.

1.1. Spectroscopic calibration

In the spectroscopic calibration dataset, consisting of n sam-
ples, each recorded on p wavelengths, the spectra can be arranged
into the matrix X(n × p), where the columns correspond to the
wavelengths, and the rows are the samples. Each sample has then
arranged an y value which is the explained (searched) variable. They
form the column vector y(n × 1).

The task for chemometric method is to find the row vector ˇ
(called estimator), which conforms to the following equation:

y = Xˇ + � (1)

where � is a vector of normally distributed measurement errors.
Such model does not contain the intercept term. Incorporating
the intercept would significantly increase the complication of
the computations. The better way is to center around the mean
(and sometimes scale around the variance) each column of X and
remember these values. But in practice, the centering of spectro-
scopic calibration matrix is in many cases unnecessary [2]. The
scaling is almost always unnecessary, because the columns contain
the same units.

1.2. Ordinary least squares disadvantages

The simpliest method for obtaining the ˇ vector would be the
use of Ordinary Least Squares (OLS):

ˇ = (XTX)
−1

XTy (2)

Unfortunately, two main problems appear here. First, the
absorbance values are collinear, so the crossproduct XTX is almost
singular. Computing its inverse is often impossible, because its
determinant lies besides the computational accuracy. Although this
problem can be partially omitted by using the Moore-Penrose pseu-
doinverse of X, the second problem appears here. The wavelength
number (p) is in most cases larger than sample number (n). This
leads to infinite number of correct (ideal) solutions, which fit Eq.

(1) without any error. The solutions are instable, with high inter-
nal variance, and additionally overfitted, because their predictive
ability [3] is unnacceptable.

1.3. The popular chemometric regression techniques

A number of techniques dealing with the collinearity and ambi-
guity have been proposed. They produce biased estimates (not
ideally fitted), but with acceptable prediction ability. The optimiza-
tion of such method is done by cross-validation to minimize RMSEP
(Root Mean Square Error of Prediction) value. Historically, the first
technique was the Ridge Regression (RR) [4]. The idea is based on
adding the small constant to diagonal elements of XTX crossprod-
uct, decreasing its singularity.

The most popular techniques used today in chemometrics are
based on Principal Component Analysis [5]. The Principal Compo-
nent Regression (PCR) [6] uses the k first principal components of
the calibration matrix as the regressors. The Partial Least Squares
(PLS) [7] takes into account also the response and maximises the
covariance between them. The Cyclic Subspace Regression (CSR)
[8] and Continuum Power Regression (CPR) [9] are the generalized
Biomedical Analysis 47 (2008) 659–669

techniques. With certain parameter values they can be equivalent
to PCR, PLS or OLS. The intermediate cases often show better pre-
dictive ability. The variable selection methods, such as Forward
Stepwise Regression (FSR) [10] or Least Angle Regression (LARS)
[11] are often used as the comparative methods.

1.4. The Basis Function Regression

The idea of Basis Function Regression, presented in this paper,
was first introduced by Hastie and Mallows [12]. They discussed the
use of smoothing splines for the estimation of coefficient function
over the wavelength. Goutis [13] applied the similar method to the
second derivative of the spectrum. Marx and Eilers [14] proposed
for the first time the projection onto some number of the equally
spaced B-spline bases. The use of B-splines as the tool for selection
of spectral variables was published recently by Rossi et al. [15].

Rasmussen [16] extended the Eilers approach to any number of
basis functions (even more than the number of samples) by use of
the integral over the wavelengths (and such variant is presented in
our paper). He applied the method to the Kalivas datasets [1] and
obtained about twice lower prediction error compared to classical
methods such as PCR and PLS, which is an obviously significant
improvement.

Although the BFR seems to be very interesting alternative,
there is general lack of its use. Searching bibliographic databases
(Scopus, etc.) we did not find no other papers describing the
use of BFR in chemical analysis. Therefore we have decided to
present this technique with sample implementation and applica-
tion.

2. Theory

2.1. The basis function transformation

Denote X as a matrix of calibration spectra, containing n rows
(samples) and p columns (wavelengths) and X as one of its spec-
tra (p-length vector). Next, denote B as a matrix of the k B-spline
basis functions B1 . . . Bk, containing p rows (wavelengths) and k
columns. The basis functions are obtained numerically and the
details about their generation are given in literature [17]. From prac-
tical point of view, B is the matrix containing peak-shaped curves.
If the functions are linear, the peaks are triangular, otherwise they
are smooth.
The following properties of the basis function matrix are inter-
esting in our case. The sum of all values for the same wavelength
(sum of one row) is equal to 1:

k∑

i=1

Bi(�) = 1 (3)

When multiplying any spectrum by series of the basis functions,
the resulting sum of the values at any wavelength is equal to the
absorbance at that wavelength at original spectrum:

k∑

i=1

Bi(�)X� = X� (4)

Therefore, by computing sums of Bi(X) over the wavelength one
can obtain k integrals, and their sum is equal to the integral of the
original spectrum (sum of absorbances):

p∑

i=1

k∑

j=1

Bj(�i)X�i
=

p∑

i=1

X�i
(5)
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Fig. 1. The example of BFR transformation

This property guarantees that no information from spectrum is
lost. A spectrum of p individual absorbances is transformed into
k variables, which can be treated as “subintegrals”, emphasizing
the subsequent regions of the spectrum. The graphical illus-
using 13 linear and cubical splines.

tration of an example spectrum transformation is presented in
Fig. 1.

The obtained subintegrals can be then used (instead of p
absorbances) in classical least squares regression, preventing the
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ambiguity and overfitting problem. The collinearity problem can-
not be totally avoided here, but at some optimal number of k the
obtained variables are not collinear.

2.2. The algorithm and its implementation

As above, we have a matrix X(n × p). We generate a matrix
B(p × k) containing k basis functions of degree r. By simple matrix
multiplication, we obtain reduced subintegrals:

Z = XB (6)

The matrix Z contains then n rows (samples) and k columns (subin-
tegrals). It is used in classical Ordinary Least Squares manner to
predict y:

U = [(ZTZ)
−1

ZTy]
T

(7)

Resulting estimators U lie still in reduced dimensions (k × 1). To
convert it to the estimator ˇ(p × 1) we use the final multiplication:

ˇ = UBT (8)
Biomedical Analysis 47 (2008) 659–669

The implementation of the above algorithm in any language which
supports matrix multiplication is fairly simple. The only difficulty
is the method used to generate the basis function matrix. In the
GNU R computational environment (www.r-project.org [18]), there
is a built-in function bs(), which do the work for us. In MATLAB
(www.mathworks.com) and GNU Octave (www.octave.org), which
are the unofficial standard for the chemometric calculations, there
is no easy way to generate spline bases. We have found no ready-
to-use routines either in Internet, or in the literature, and finally
obtained a sample code from Dr. Graeme A. Chandler (see Acknowl-
edgement). The obtained code snippet was cleaned up, reorganized
and tuned especially for the specified task.

The resulting MATLAB/Octave code is presented below and
consists of two functions. The first function bfr() is the main BFR
routine. It accepts the spectral matrix X, the column vector y, the
degree of the basis functions r and their number k. The subroutine
bspline() is called from this function and generates the basis
function matrix with k + r + 1 columns (k + r − 1 internal knots
and 2 boundary knots). The result of the bfr() function is a matrix
with k columns, each of them containing the ˇ for 1 . . . k used
knots.

http://www.r-project.org
http://www.mathworks.com
http://www.octave.org
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• Solpadeine—tablets (500 mg acetaminophen, 30 mg caffeine,
8 mg codeine phosphate), produced by SmithKline Beecham,
series No. 060925.

• Solpadeine—effervescent tablets (500 mg acetaminophen, 30 mg
caffeine, 8 mg codeine phosphate), produced by GlaxoSmithKline,
series No. 065168.

• Solpadeine—capsules (500 mg acetaminophen, 30 mg caffeine,
8 mg codeine phosphate), produced by SmithKline Beecham.

• Talvosilen forte—capsules (500 mg acetaminophen, 30 mg
codeine phosphate) produced by Bene-Arzneimittel GmbH,
series No. 652105.

3.1. Calibration dataset

The calibration set consisted of binary and ternary methanolic
mixtures in concentration not exceeding 14 mg/L of the sum of the
ingredients. Due to extremely large number of possible combina-
tions only the sets present together in one pharmaceutical formu-
lation were used (see Section 4). We used 15 solutions for each of

Table 2
The concentrations (mg/L) of compounds in ternary calibration series

Solution Compound 1 Compound 2 Compound 3

1 2.0 3.0 4.0
2 1.0 4.0 2.0
3 4.0 1.0 3.0
664 Ł. Komsta et al. / Journal of Pharmaceutic

3. Experimental

The aim of the example application elaborated in our lab-
oratory was to obtain the chemometric model useful for OTC
antipyretic and analgesic tablet content recognition. The model
was trained against 12 possible ingredients: acetaminophen
(ACE), aspirin (ASP), caffeine (CAF), codeine phosphate (COD),
dextrometorphan hydrobromide (DEX), dipyrone (DIP), ethoxyben-
zamide (ETO), ibuprofen (IBU), phenylephrine hydrochloride (PHE),
propyphenazone (PRO), pseudoephedrine hydrochloride (PSE) and
vitamin C (VIT).

All the substances used were of appropriate purity (Sigma–
Aldrich, USA). The spectra were recorded in spectroscopic grade
methanol (POCH, Gliwice, Poland) using Hitachi UV-2001 double-
beam spectrophotometer in 1 cm quartz cells, in range 200–300
nm with 0.5 nm resolution (200 absorbances).

The formulations used in the investigation were bought in local
a drugstore:

• Antidol 15—tablets (500 mg acetaminophen, 15 mg codeine phos-
phate), produced by Lek, series No. 7420111H.

• Apap C plus—effervescent tablets (500 mg acetaminophen,
300 mg ascorbic acid), produced by US Pharmacia, series No.
607275.

• Aspirin C—effervescent tablets (400 mg aspirin, 240 mg ascorbic
acid), produced by Bayer, series No. BTA 5902.

• Cefalgin—tablets (250 mg acetaminophen, 150 mg prophy-
phenazone, 50 mg caffeine), produced by Polfa Pabianice, series
No. 60506.

• Coffepirine—tablets (450 mg aspirin, 50 mg caffeine), produced
by Marcmed Lublin, series No. 060407.

• Codipar plus—tablets (500 mg acetaminophen, 65 mg caffeine),
produced by GlaxoSmithKline, series No. K06005.

• Coldrex HotRem—sachets (750 mg acetaminophen, 10 mg
phenylephrine hydrochloride, 60 mg ascorbic acid), produced by
GlaxoSmithKline, series No. 6033.

• Coldrex MaxGrip—sachets (1000 mg acetaminophen, 10 mg
phenylephrine hydrochloride, 40 mg ascorbic acid), produced by
GlaxoSmithKline, series No. Z217.

• Dafalgan Codeine—tablets (500 mg acetaminophen, 30 mg
codeine phosphate), produced by UPSA, series No. J9752.

• Efferalgan—effervescent tablets (330 mg acetaminophen, 200 mg
ascorbic acid), produced by UPSA, series No. J8581.

• Etopiryna—tablets (300 mg aspirin, 100 mg ethoxyben-

zamide, 50 mg caffeine), produced by Polpharma, series
No. 71106.

• Gardan P—tablets (200 mg prophyphenazone, 300 mg dipyrone),
produced by Polfa Pabianice, series No. 10107.

• Grypostop—tablets (325 mg acetaminophen, 30 mg
pseudoephedrine hydrochloride, 15 mg dextrometor-
phan hydrobromide), produced by PERRIGO, series
No. 5K1591.

• Ibuprom—tablets (200 mg ibuprofen), produced by US Pharma-
cia, series No. 1687707.

• Modafen—tablets (200 mg ibuprofen, 30 mg pseudoephedrine
hydrochloride), produced by ZENTIVA, series No. 3821204.

• Neopyrin ASA—tablets (300 mg aspirin, 100 mg acetaminophen,
50 mg caffeine), produced by BIOFARM, series No. 020706.

• Nurofen Plus—tablets (200 mg ibuprofen, 12.8 mg codeine phos-
phate), produced by Boots Healthcare, series No. 87J.

• Panadol Extra—tablets (500 mg acetaminophen, 65 mg caffeine),
produced by GlaxoSmithKline, series No. 060774.

• Saridon—tablets (250 mg acetaminophen, 150 mg prophy-
phenazone, 50 mg caffeine), produced by Roche, series No.
L2F368.
Biomedical Analysis 47 (2008) 659–669

Table 1
The concentrations (mg/L) of compounds in binary calibration series

Solution Compound 1 Compound 2

1 1.0 2.0
2 7.0 7.0
3 4.0 1.0
4 2.0 3.0
5 1.0 5.0
6 3.0 4.0
7 6.0 2.0
8 8.0 1.0
9 2.0 8.0

10 5.0 6.0
11 4.5 1.5
12 4.5 5.0
13 3.5 3.5
14 1.5 6.5
15 4.0 5.0
4 3.0 2.0 1.0
5 1.5 3.5 3.0
6 3.0 2.0 3.5
7 2.5 2.5 2.5
8 2.0 3.0 1.5
9 3.5 1.5 2.0

Fig. 2. The similarities between RMSEP values obtained with different techniques
presented by Principal Component Analysis.
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Fig. 3. The boxplot of RMSEP values (mg/L) obtained within different techniques.

the following combinations (concentrations given in Table 1):

(1) aspirin and vitamin C;
(2) ibuprofen and codeine phosphate;
(3) ibuprofen and pseudoephedrine hydrochloride;

Fig. 5. Concentrations of pharmaceutical formulations ingredients (names of formulation
expected value (expected values are connected by dashed line). Part 1
Biomedical Analysis 47 (2008) 659–669 665

Fig. 4. The stripchart of RMSEP values (mg/L) for 12 substances. The lowest values
(marked by line) are obtained using different variants of BFR.

(4) aspirin and caffeine;
(5) acetaminophen and codeine phosphate;
(6) acetaminophen and codeine;
(7) propyphenazone and dipyrone;

s above plots), calculated by BFR method. Arrows indicate error of the result against
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lation
Fig. 6. Concentrations of pharmaceutical formulations ingredients (names of formu
expected value (expected values are connected by dashed line). Part 2
and 9 solutions of each ternary mixture (concentrations given in
Table 2):

(1) aspirin, ethoxybenzamide and caffeine;
(2) aspirin, acetaminophen and caffeine;
(3) acetaminophen, phenylephrine hydrochloride and vitamin C;
(4) acetaminophen, codeine and caffeine;
(5) acetaminophen, propyphenazone and caffeine;
(6) acetaminophen, pseudoephedrine and dextrometorphan

hydrobromide;

which resulted in 7 × 15 + 6 × 9 = 159 total calibration spectra.

3.2. Data processing

The calibration matrix was used to obtain concentration pre-
diction model for each of the 12 substances. The models were
cross-validated by 10-fold validation against the RMSEP (mg/L)
value. The BFR technique was validated using linear (BFR-L),
s above plots), calculated by BFR method. Arrows indicate error of the result against
quadratic (BFR-Q) and cubical (BFR-C) splines with 1–50 knots.
The following techniques were also calculated and validated for
comparison:

• Partial Least Squares (PLS), Principal Component Regression (PCR,
CPCR)—1–50 components.

• Cyclic Subspace Regression (CSR)—variable l in range 1–50, for
its each value variable j was in range 1 – l (1275 combina-
tions).

• Continuum Power Regression (CPR) 1–50 factors, for each factor
number continuum parameter was within range 0.1–1 in step
0.05 (19 values, 950 total combinations).

• Forward Stepwise Regression (FSR), Least Angle Regression
(LARS)—1–50 chosen variables.

• Ridge Regression—the small constant k in range 0.01–0.3 with
step 0.01 (29 values).

The model building and validation was performed under the
GNU Octave numerical environment. For the BFR technique, the
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lation
Fig. 7. Concentrations of pharmaceutical formulations ingredients (names of formu

expected value (expected values are connected by dashed line). Part 3

code presented in this paper was used. For the other techniques
we used the functions given by Rasmussen [16], Sjöstrand [19]
and Daszykowski et al. (TOMCAT Toolbox for MATLAB [20]). The
crossvalidation of all techniques lasted about 100 h of con-
tinuous running on Intel Dual Core Pentium 2 GHz with 2 GB
RAM.

4. Results and discussion

The recognizing of single, binary or ternary combination of 12
possible compounds is quite a difficult task for a linear chemo-
metric model. The spectra of several drugs are very similar (when
investigating similarity by clustering technique, strong similarity is
observed for propyphenazone and dipyrone or caffeine and ethoxy-
benzamide). There is a risk that the compound will be recognized as
other similar compound, when spectra are mixed and additionally
any small possible matrix effect is present. Although the perfor-
mance of such large model cannot be high enough to use it in
pharmaceutical control, it can be used as a tool for content recog-
s above plots), calculated by BFR method. Arrows indicate error of the result against
nition and estimation of the concentration, for example, in forensic
toxicology.

The classical mixture design could not be used directly in our
case due to following reasons: the task for chemometric model here
is not to estimate proportions of ingredients of a mixture, but to
predict absolute concentrations of possible ingredients. The tablet
sample consists of active compounds (absorbing UV significantly)
and other excipients (such as lactose, talc, etc.) which absorb UV
light poorly and do not interfere in practice with active ingredi-
ents. Moreover, the sum of active ingredients in calibration samples
should not exceed 14 mg/mL, because absorption bands would then
exceed the scale of spectrophotometer. The calibration set must
then contain compounds with different proportions and also differ-
ent absolute concentrations. We have obtained the concentrations
meeting these criteria by generating random sets until these criteria
are met.

There is a very large number of possible combinations of active
ingredients. We have decided to use only binary and ternary
mixtures of compounds present together in pharmaceutical formu-
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lation
Fig. 8. Concentrations of pharmaceutical formulations ingredients (names of formu
expected value (expected values are connected by dashed line). Part 4
lations. Such approach do not exhaust all possible combinations in
context of DoE, but was found to be sufficient in our case. More-
over, the individual binary and ternary sets can be further used as
more specialized calibration set for quantitative determination of
particular drug, which is very important and costs little in terms of
time and the quantity of reagents consumed.

From each technique, the optimal parameter set (number of fac-
tors, continuum, constant, etc.) was chosen to minimize RMSEP
value. The minimal RMSEP values obtained with each technique
were collected for each of the 12 compounds.

Fig. 2 show the multivariate similarity between RMSEP values
(two first principal components). The BFR techniques are clustered
together and clearly separated from the others. Fig. 3 shows the
boxplot of RMSEP values (12 values, 1 for each compound) grouped
by techniques. It is clearly seen, that BFR variants (BFR-L, BFR-Q,
BFR-C) present visibly lower prediction error. For each drug (Fig. 4,
errors grouped by substance) lowest RMSEP values (connected by
line) were always obtained with one of BFR variants, where the
optimal number of knots was in range 14–39 depending on a variant
and a compound.
s above plots), calculated by BFR method. Arrows indicate error of the result against
We have decided to use BFR for building final models and tested
the models by content estimation of 23 multicomponent phar-
maceuticals available on the Polish market. The grounded tablet,
capsule content of powder amount equivalent to final concentra-
tion approximately 7.5 mg/L of sum of ingredients were placed in
volumetric flask, dissolved in methanol, ultrasonicated (15 min)
and then filtered. The spectra was measured in the same way and
used for prediction.

Most of the formulations (16 of total 23, see Figs. 5–8 ) were
recognized very well and small errors are fully acceptable for semi-
quantitative content recognition. The following formulations were
recognized with not acceptable error:

(1) Aspirin C and Efferalgan C—probably due to the same interfering
effervescent excipients in tablets.

(2) Cefalgin and Saridon—due to strong similarity of the dipyrone
and propyphenazone spectra (propyphenazone was recognized
as dipyrone).

(3) Ibuprom, Modafen—due to relatively low absorbance of iburo-
fen at 7.5 mg/L concentration.
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(nm)

[4] A.E. Hoerl, R.W. Kennard, R.W. Hoerl, J. R. Stat. Soc. C 34 (1985) 114–
Fig. 9. The estimator for ibuprofen in function of wavelength

(4) Nurofen plus—due to relatively low absorbance of iburofen at
7.5 mg/L concentration and additional interfering excipients.

Comparing the estimator as function of wavelengths, we present
an example of ibuprofen in Fig. 9, but for all the other substances
the conclusions are similar. We see that PCR, PLS, CPCR and Ridge
Regression produce very similar estimators. They find good and
collinear dependence in 220–300 nm (where ibuprofen differs
from other substances), but also “take care” on 200–220 nm non-
specific region, producing the chaotic estimator values here. The
FSR technique locates selected variables almost only at inspecific
region (and therefore has worst predictive ability), LARS founds

more important wavelengths at appropriate region, still focus-
ing at 200–220 nm. The BFR techniques almost completely reject
the inspecific region (the chaotic values here ale “smoothed” and
averaged to zero), and all found dependences are located in the
appropriate analytical region. This seems to be a reason that BFR
works better in our case. It is clearly seen from this Figure that the
BFR technique can be treated as spline-smoothing method of the
estimator function, where the knots are located by the algorithm,
and between the knots the function is smoothly interpolated.

5. Conclusion

The Basis Function Regression is an interesting alternative to
PLS and PCR. It can (and even should) be always considered during
predicting any property of the sample from the spectral data as
comparative method, both in semiquantitative and quantitative
analysis. It can show better performance than PCR and PLS in
certain cases, especially when the considered ingredients of the
sample have strong similarity of their individual spectra. The
presented MATLAB routines allow any chemometrician to use it in
everyday practice.
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for (a) PCR, PLS, CPCR and Ridge; (b) FSR and LARS; (c) BFR.
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